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Abstract We study Ihe electrostatic screening of a large periodic potential by a two- 
dimensional electron gas in zero magnetic field. For large potentials Ihe screening is non-linear, 
depleted areas form which leads ta the creation of either a dot or antidot lattice. The self- 
consistent potential is calculated numerically. The results show a significant alteration of Ute 
shap of the applied potential by the screening. 

1. Introduction 

In recent years there has been much study, both theoretical 11-51 and experimental [6-91, 
of the properties of lattices of dots and antidots. These shctures are created when a two- 
dimensional electron gas (2DEG) is manipulated so that the electrons may only occupy certain 
areas. If they are restricted to small isolated regions then dots are formed; if however they 
are excluded from small isolated regions, antidots are created. These structures are most 
often periodic, the dots or antidots being arranged on a triangular [4] or square [6,7] lattice. 
These structures have the generic name lateral surface superlattices (LSSL). 

The realization of such structures is typically as follows. A 2DEG is formed in a 
semiconductor heterojunction near the surface of a crystal. Then the surface of the crystal 
may be etched [ 101. or periodically damaged by an ion beam [8,1 I] or else have a specially 
shaped periodic gate laid on top [6,12,13]. When, for example, a voltage is applied to this 
gate a periodic electrostatic field is set up inside the crystal. The bulk crystal will screen 
this potential, and the 2DEG wiU feel only the lowest Fourier modes. If the field is sttong 
enough then depleted areas will form, leading either to a dot or an antidot lattice. It is 
experimentally possible 181 to take a dot lattice and successively raise the electron density 
so that the dot size increases until the system passes through a threshold into an antidot 
lattice. 

Very little work has been done on the static response of the ZDEG to the applied field. 
Most textbook treatments of screening are done in the linear regime, where the modulation 
of the electron density is small [14,15]. This is most certainly not the case here. Section 2 
of this paper goes beyond the linear approximation to develop a screening equation for an 
‘incomplete’ electron gas (i.e. one which has depleted a rm) .  The solution of this equation 
will give the self-consistent electrostatic potential for cases where the electron density is 
periodic. This equation can be solved using very basic numerical iteration. The results 
show that the electron gas can greatly modify the shape as well as amplitude of the applied 
potential. This treatment is for zero magnetic field. There has been previous work on non- 
linear screening, for example [ 16,171. Some treatments concentrate on strong magnetic 
fields [1&20], or certain special geometries [Zl]. 
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Many successful theoretical treatments Of transport in antidot lattices involve considering 
the classical motion of electrons in model screened potentials [5,7]. The shape of the actual 
potential may then be important as it affects the electron trajectories. Knowledge of the 
screening can also be important when considering the conductance of a system that is just 
below the threshold between a dot and an antidot lattice. This system will naturally show a 
dramatic rise in its conductance as threshold is approached. A theoretical treatment requires 
information of how the screened potential will change with Fermi level or electron number. 
This conductance problem will be discussed in a later paper. 

Though typical conditions of the experiments are such that disorder has to be allowed 
for, the perfect lattice description given here can apply in extreme conditions, and it includes 
many of the essential ingredients for a more general treatment. In general the disorder will 
have a greater effect on the conductance than on the screened potential. 

2. Derivation of the screening equation 

Consider a zDEG in which the charge density varies over scales large compared to the mean 
separation of the electrons. In such a case it  is possible to write the electronic charge density 
p ( r )  in the form 

p ( r )  = -en(x. y ) W )  

for a ZDEG that is normal to the z direction. Following [22]. inserting this into Poisson's 
equation, and performing a Fourier transform with respect to x and y gives 

1 
Qind(k, z )  = -en(k)s(z). ($ - € 0 6  

This has the solution 

Here Pd is the electrostatic potential in the z = 0 plane created by the distribution of 
electronic charge. The relative permittivity E ,  is taken to be that of the crystal in  which the 
ZDEG exists. For example G A S  has E ,  = 13.1. 

The electron gas will move under the influence of the fotul electrostatic potential $ ( x ,  y), 
and we shall need to know the equilibrium distribution n ( x ,  y) for a given 4. So long as 
the potential varies over distances large compared to the mean electron spacing, then the 
number density will be given by 

where g ( ~ )  is the two-dimensional density of states and P ( E )  is the Fermi-Dirac distribution 
function. The integral can be performed exactly, and yields the result 

n ( x ,  y) = ;;i;z [(f i + e@(x, y)) + kT In (I + e-(N+e+(r*y))'kr 

where f i  is the chemical potential, and we have assumed a two-fold spin degeneracy. This 
can be written in the form 

)I (3) 
m 

m 
n(x,r) = ; ; j ; i . ( f i + + 4 ( x , y ) ) f , ( x , y , T ) .  
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At low temperatures where kT is small compared to p. the function f , ( x ,  y .  T )  can be 
replaced by the areafunction f ( x ,  y) = f , ( x ,  y, 0). This has the form 

f ( x ,  Y )  = 1 
f ( x ,  Y )  = 0 

I*. 2 - e W ,  y) 
f i  < - e W ,  Y). 

For many cases the applied potential will be periodic, such as in a dot or antidot lattice. 
In this situation the resulting charge density and screened potential will also be periodic. 
All such quantities can thus be expanded as two-dimensional Fourier series. For example 

At this point we have three equations which when solved together will yield the self- 
consistent screened field 4 ( x ,  y) created when an external field r$ert(x, y) is applied to a 
2DEG. When expressed in Fourier space these equations take the following form. 

i d  e l  4 (k) = - - -n(k) .  2 ~ 3 ~ ,  k 
Eliminating +ind and n ( k )  yields the screening equation, the solution of which will give the 
screened potential. 

Here a0 is the 'reduced' Bohr radius, me2/47rh2e~c,. This equation is difficult to solve in 
general because it contains an unavoidable self-consistency. This arises because the area 
function f which defines the boundary of the 2DEG will depend upon n ( x ,  y )  which in mm 
depends upon the screened potential @ ( x +  y). 

If, however, the external field is small and the chemical potential is high then there 
will not he any depleted regions. In this case f ( x ,  y )  = 1 everywhere, and the screening 
equation simplifies to the more familiar linear equation 1151: 

r 

3. Numerical solution for a periodic two-dimensional potential 

3.1. Reducrion fo a mrrix equnrion 

In order to proceed with the general equation (7) we shall consider the case of an external 
potential that is periodic and even with period a in both the x and y directions. The screened 
potential would be expected to have the same periodicity. If the applied potential is large 
enough then depleted regions will exist, and the structure will be that of a dot or antidot 
lattice. When the density of electrons or chemical potential p is varied then the boundary 
of the electron gas will move. It is reasonable to assume that the boundaries for different 
values of p do not cross. In this case specifying a point b as being on the edge of the 
electron gas will uniquely define both the boundary and hence the chemical potential: 

(9) p = -e#(&) = - e C b ( q ) c o s ( q .  6 ) .  
4 
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This can be inserted into the screening equation (7) to obtain 

The wavevectors k and q have the form (2amja. 2nn/a) where n and m are positive or 
negative integers. Because of the square lattice symmetry of the potential all four of the 
Fourier components 4 ( & k x ,  ik,) are equal. This symmetry canies through to the Fourier 
components of the area function, f ( k ) .  This enables the sum in (10) to be rewritten so that 
it runs over wavevectors q that have both qr and qy positive. The equation then reduces to 
the form 

where the plus indicates that both components of q are positive. The coefficient Abq has 
the form 

2 
aok 
- [ f ( ( k x  - q A ( , k y  - q , ) ) + f ( ( k = + q , ) , ( k y - q y ) ) + f ( ( k ,  - q A ( k , + q y ) )  

+f(& + q.A (kY+qy))+2cos(bxqx + b y q , ) + 2 ~ s ( b , &  - byqy)]+6kq. 
(12) 

If, however, either qx or qy are zero, then this equation gives twice the required answer 
(because there is then only a symmetry between two different q values rather than the usual 
four). In this case the first of the two terms in (12) should be divided by two. 

In many circumstances the applied potential can be described well by very few Fourier 
components. It should then be possible to describe the screened potential well using a finite 
set of Fourier components. The wavevectors can be restricted to the set (2nn/n ,  2nm/a) 
where n and m are positive and n ,  m < N .  The numerical results showed that N - 20 was 
sufficient. The screening equation, as written, does not take into account the background 
charge density produced by the fixed positive ions in the crystal. The effect of this 
background is to make @(O) equal to zero (charge neutrality). This condition can now 
be included by simply removing the wavevector 0 from the set of allowed values. The total 
number of allowed wavevectors is then NZ - 1 .  

Once these restrictions are applied then (11) reduces to a finite size matrix equation. 
This equation must still be solved self-consistently. The matrix elements of A depend upon 
the area function, which in turn depends upon the screened potential $. 

The matrix equation can be solved numerically using an iterative loop involving a 
standard LU decomposition routine. This method converges quickly to give the self- 
consistent potential. 

Once the screened potential and chemical potential has been obtained, it is very easy 
to calculate the total number of electrons in a single dot. This is given by the following 
integral over a lattice square. 

This equation is valid at T = 0, and assumes that the density of states is just m,/ah2. 
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4. Numerical results for the screened potentials 

501 1 

In this section we present the results of the numerical solution of (1 1). For simplicity here 
we chose an external potential that only contains one wavelength. 

Q " ' ( x ,  y) = v, [cos (T) + cos (3 (14) 

The results presented here are for the specific parameter values a = 800 nm (which is a 
typical value for a LSSL) and VO = 0.5 V (which is not typical). The numbers presented 
will, however, scale very simply with the parameter VO; q5 a Vo, N a V,. 

The computational solution involved selecting a vector b which is chosen to lie on the 
edge of the electron gas. This in turn will have selected a unique boundary. The numerical 
calculations then give both the Fourier components of the screened potential and the value 
of the chemical potential. 

0.8 0.6 I 

0.40 

0.20 

0.1 0 

0.00 

0.30 

CO,@ 

F i m  1. This shows 3D plots of the numerically calculated screened potentid for four different 
numbers of electrons per dot. As the sequence progressu ( a H d )  the number of electrons 
increases. Each plot shows only one qtwtez of a lattice square with Innice Ccmtant a = 8W nm. 
(a) N = 490, b = (188.0) @) N = 1470, b = (344.0) (c) N = 1690, b = (400.31) (d) 
N = 3550, b = (400. 156). The conlour line shows the edge of the elmon gas. 

Figure 1 shows the results of the numerical calculations for b equal to each of 
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These values cover the whole range from isolated quantum dots through threshold to an 
antidot lattice. For each value of b there is a 3D plot of the screened potential in the upper 
right-hand quadrant of a single lattice square. 

All of the plots have the general feature that where the area function f is unity and 
there are electrons, the potential gradient is small. But, in the region beyond the edge of 
the electron gas where f is zero, the potential becomes far steeper. The electron gas has 
significantly altered the shape of the potential. This alteration of shape would effect the 
classical motion of an electron in the dot or antidot lattice. 

The threshold between a dot lattice and an antidot lattice occurs when the number of 
electrons per dot, Ne,  is 1560. At this point each dot covers a fraction 0.41 of the area of 
a lattice square. 

R W Tank and R B Stinchcombe 

Figure 2. Plols showing the variation in (a) width and (b) minimum height of the banier 
between neighbouring dols on the lattice. Thc points indicate the numerical values and the lines 
show the fined power laws. 

When the system is below threshold, the system consists of an array of isolated dots 
which are separated by a potential barrier. Figure 2 shows how the minimum width and 
minimum height of this barrier (measured from the Fermi level) varies with IN - NE\, the 
difference between the number of electrons per dot and the number at threshold. The plots 
show that there is an approximate power law relationship. The barrier height varies as 
IN - Nc11~20*0~01 and the barrier width as IN - N,~0~5uo~01. As threshold is approached the 
width of the barrier very rapidly decreases. At this point there is very little change in the 
shape of the electron gas boundary with electron number, except at the points where the 
barrier is thinnest. Here the gas develops a narrow extension that eventually joins to the 
neighbouring dot. 

When the number of electrons in a lattice square increases beyond N,,  neighbouring 
dots merge to form an antidot structure. Now each lattice square can be considered to 
contain a reservoir of e l w n s  joined by a thin constriction to the neighbouring squares. 
As the number of electrons per lattice square increases further, the constriction widens and 
deepens. The constriction width and maximum depth (measured from the Fermi level) also 
show an approximate power law dependence with (N - Nc)  . The constriction width varies 
as ( N  - Nc)0~55m.oz and the depth as ( N  - N,)O~"*O~Oz. 
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The lateral conductance of a dot lattice close to threshold will depend crucially on the 
width and height of the potential barriers separating the dots. Consequently the exponents in 
the power law relationships will be important in predicting the variation of the conductance 
with electron number. 

5. AnaIjlk considerations of the power laws 

In the previous section we presented results for screening of a simple applied potential by 
an incomplete electron gas. This screening was highly non-linear, in the sense that as well 
as reducing the amplitude of the potential, the electrons also alter its shape and introduce 
further Fourier components. This process in turn affects the exponents of the power laws 
discussed in the last section. It is interesting to ask how different the numerical exponents 
are to those given by a linear screening theory. This will tell us how necessary it will be 
to use the non-linear potential in a conductance calculation. 

In a linear theory the screened potential will not be changed in shape only in amplitude. 
The potential energy felt by the electrons would then be 

where the boundary of the electron gas is given by 

cos (F) +cos (?) = 7. 

It is possible to deduce from this equation the expected exponents for the power laws 
neglecting the shape modification effects. If, in addition, screening was totally neglected 
then V&) would be constant and (15) would give the banierlconstriction width proportional 
to IN - NcI0.' and the barrier heightkonstriction depth proportional to IN - NC1'.". If the 
function Vo is allowed to be vary then the exponents are only slightly modified 

width (- q0.5) c( IN - ~ p 5 + 6  (17) 

heighudepth (- qVo(q)) o( IN - Ncl'.o+y (18) 

where S and y are positive and of order IO-'. The linear exponents for the widths agree well 
with the numerical results, but there is poor agreement with them and the numerical results 
for the barrier height and constriction depth. These exponents are significantly modified by 
the non-linear aspect of the screening. 

It is easy to see why the change of shape will affect these exponents if one considers 
trying to fit a functional form for Vo(q) to the numerical data. One logical procedure would 
be to choose I? to give the correct width (and hence similar boundary) and then fix the value 
of Vo(q) to give the correct number of electrons. This procedure has the effect of fitting 
the simple cos(x) + cos(y) potential to the true potential in the region where the electron 
density is non-zero. The results of this procedure are shown in figures 3 and 4. Figure 3 
shows cross-sections of the true and fitted potentials taken along the line y = 0 for a system 
below threshold. Figure 4 shows cross sections of the true and fitted potentials along the 
line x = a12 for a system above threshold. 

Consider now using the fitted potential to deduce the harrier height. Figure 4 shows 
that this procedure would underestimate the height. As you move away from threshold and 
IN - N,I increases the discrepancy will get worse. This implies that the numerical barrier 
height will have a larger exponent than the linear prediction. 
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c I -1 400 

Figure 3. Cross-seclions along the line y = 0 showing both the lr 
fined potentid for a system below threshold. 

screene potential and the 

Figure 4. Cross-sections along the line x = a12 showing bath the me screened potential and 
the fined potential for a system above threshold. 

The situation is different for the constriction depth. The fitted potential will always 
have, at the point (a/Z,O), the same curvature in the x and y directions. The true potential 
however has a larger curvature in the y direction. Consequently use of the fitted potential to 
deduce the depth will always produce an underestimate. This time, however, the discrepancy 
improves as ( N  - Nc)  increases. In turn this implies the numerical depth has an exponent 
smaller than the linear prediction. 

So, for both the constriction depth and the barrier heighf there is discrepancy between 
the linear prediction (1 8) and the actual numerical exponents and this due to the modification 
of the potential shape by screening. 
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6. Conclusions 

In this paper we have presented a theory for the non-linear screening of a periodic external 
potential by a two-dimensional plane of electrons in zero magnetic field. This should be 
applicable to a 2DEG formed at a heterojunction to which a suitable potential is applied 
leading to the formation of a dot or antidot lattice. The method presented lends itself 
easily to numerical solution, and can be applied to any applied potential that is adequately 
expressed by a small set of Fourier components. 

We have concentrated on the evolution of the potential as a dot lattice changes to an 
antidot lattice with increasing electron number. For clarity we picked the simplest applied 
potential that will show this behaviour, namely the sum of two cosines. The numerical 
calculations showed a significant change in the shape of the potential once it was screened. 

Well within either the region where the electron density is non-zero (f = 1) or the 
region with (f = 0) the shape of the screened potential does come close to the shape of 
the applied potential. This is illustrated by figure 3. A simple functional form to describe 
the screened potential could be the following 

In this equation the function Vl will be much larger than V,. Both will vary with the 
electron number N .  The functional form given here will naturally break down when close 
to the edge of the electron gas. 

We studied in more detail the potential barriers between dots in a lattice below threshold. 
The height and width of this barrier show a power law relation to IN - NJ. the difference 
between electron number and the number at threshold. The exponents differ from those 
expected from linear screening. 

The simple applied potential used here may not be appropriate to most experimental 
situations. A more realistic potential can easily be used, its form depending on the sample 
fabrication. In general a different potential will show different exponents. However one 
can consider a class of potentials which have a well defined minimum, saddle point and 
maximum, and which exhibit the transition from dot to antidot lattice. Numerical results 
show that the exponents within this class are comparable. This occurs because the exponent 
is dominated by the behaviour close to the saddle point, which is similar in all cases. Certain 
experiments may fall into this class [8]. The results of this paper will then be applicable. 

In this paper we have not treated the effects of disorder. There are two main souroes 
of disorder. Firstly the applied potential in any real system will not be perfectly periodic. 
The size of the deviation from periodicity will vary with fabrication technique, but can be 
very small for lithographic methods. Secondly many 2DEGs are created in modulation doped 
smctures. There will be a layer of ionized donors lying above the ZDEG. These will set up 
a random potential that will be seen by the electrons in the ZD layer. If the length scale of 
the disordered potential is small compared to the lattice constant of the applied potential, 
then the large scale features of the screened potential will be little changed. This condition 
may be satisfied if the donor spacing is small enough and the lattice constant large enough. 
However this is not always the case. In order for the results in this paper to remain valid the 
amplitude of the applied potential must be large compared to the amplitude of the random 
potential. The typical scale of these fluctuations is 10 meV, and in certain experimental 
situations this is small enough to be neglected in comparison with the applied potential. 

As mentioned before, the systems we discuss will show a rise in conductivity as 
threshold is approached. In a perfect lattice this can be viewed through the formation 
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of bands from the bound dot states. In systems with disorder on the scale of the lattice 
constant the band picture. is inappropriate. In this case conduction will occur via hopping 
between dots. In both cases the potential shape between the dots is important. A subsequent 
paper will discuss in detail the mechanism for this conductance rise. 
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